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Abstract: Land data assimilation system (LDAS)-Monde, an offline land data assimilation system
with global capacity, is applied over the CONtiguous US (CONUS) domain to enhance monitoring
accuracy for water and energy states and fluxes. LDAS-Monde ingests satellite-derived surface
soil moisture (SSM) and leaf area index (LAI) estimates to constrain the interactions between soil,
biosphere, and atmosphere (ISBA) land surface model (LSM) coupled with the CNRM (Centre
National de Recherches Météorologiques) version of the total runoff integrating pathways (CTRIP)
continental hydrological system (ISBA-CTRIP). LDAS-Monde is forced by the ERA-5 atmospheric
reanalysis from the European Center for Medium Range Weather Forecast (ECMWF) from 2010
to 2016 leading to a seven-year, quarter degree spatial resolution offline reanalysis of land surface
variables (LSVs) over CONUS. The impact of assimilating LAI and SSM into LDAS-Monde is assessed
over North America, by comparison to satellite-driven model estimates of land evapotranspiration
from the Global Land Evaporation Amsterdam Model (GLEAM) project, and upscaled ground-based
observations of gross primary productivity from the FLUXCOM project. Taking advantage of the
relatively dense data networks over CONUS, we have also evaluated the impact of the assimilation
against in situ measurements of soil moisture from the USCRN (US Climate Reference Network),
together with river discharges from the United States Geological Survey (USGS) and the Global
Runoff Data Centre (GRDC). Those data sets highlight the added value of assimilating satellite
derived observations compared with an open-loop simulation (i.e., no assimilation). It is shown
that LDAS-Monde has the ability not only to monitor land surface variables but also to forecast
them, by providing improved initial conditions, which impacts persist through time. LDAS-Monde
reanalysis also has the potential to be used to monitor extreme events like agricultural drought. Finally,
limitations related to LDAS-Monde and current satellite-derived observations are exposed as well as
several insights on how to use alternative datasets to analyze soil moisture and vegetation state.

Keywords: land surface modeling; data assimilation; remote sensing

1. Introduction

One of the major scientific challenges in relation to the adaptation to climate change is
observing and simulating the response of land biophysical variables to extreme events, making
land surface models (LSMs) constrained by high-quality gridded atmospheric variables and coupled
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with river-routing models key tools to address these challenges [1,2]. The modelling of terrestrial
variables can be improved through the dynamical integration of observations. Remote sensing
observations are particularly useful in this context because of their global coverage and higher spatial
resolution (10 km and below). The current fleet of Earth observation missions holds an unprecedented
potential to quantify land surface variables (LSVs) [3] and many satellite-derived products relevant
to the hydrological and vegetation cycles are already available at high spatial resolutions. However,
satellite remote sensing observations exhibit spatial and temporal gaps and not all key LSVs can be
observed. LSMs are able to provide LSV estimates at all times and locations using physically-based
equations, but as remotely sensed observations, they are affected by uncertainties (e.g., parametrization
representation, atmospheric forcing, initialisation). Through a weighted combination of both, LSVs
can be better estimated than by either source of information alone [4]; data assimilation techniques
enable one to spatially and temporally integrate observed information into LSMs in a consistent way
to unobserved locations, time steps, and variables.

In the past recent years, several land data assimilation system (LDAS) have emerged at different
spatial scales: “site level”, like the data assimilation system for LSMs using CLM4.5 (Community
Land Model 4.5, [5]); regional, like the coupled land vegetation LDAS (CLVLDAS, [6,7]) and the
famine early warning systems network (FEWSNET) LDAS (FLDAS, [8]); continental, like the North
American LDAS (NLDAS, [9,10]) and the National Climate Assessment LDAS (NCA-LDAS [11]);
as well as at global scale, like the global land data assimilation (GLDAS, [12]) and, more recently,
LDAS-Monde [13]. LDAS-Monde has been developed to constrain the CO2-responsive version of
the ISBA (interactions between soil, biosphere, and atmosphere) LSM [14–17] using satellite derived
observations within the open-source SURFEX modelling platform (SURFace Externalisee, [18]) of
Meteo-France. LDAS-Monde has been implemented in a monitoring chain of terrestrial water and
carbon fluxes. Unlike most of the above mentioned LDAS, LDAS-Monde is able to jointly and
sequentially assimilate vegetation products such as leaf area index (LAI) together with surface
soil moisture (SSM) observations [13,19–21]. Ref. [13] tested LDAS-Monde over Europe and the
Mediterranean basin for the 2000–2012 period. A long term, global scale, multi-sensor satellite-derived
surface soil moisture dataset (ESA CCI SSM, [22–25]) along with satellite derived LAI (GEOV1,
http://land.copernicus.eu/global/ last access, June 2018), were jointly assimilated. LDAS-Monde
was forced by WFDEI (WATCH-forcing-data-ERA-interim) observations based atmospheric forcing
dataset [26,27] at half degree spatial resolution. Analysis impact was successfully carried out using
(i) agricultural statistics over France; (ii) river discharge observations; (iii) satellite-derived estimates
of land evapotranspiration from the global land evaporation amsterdam model (GLEAM) project;
and (iv) spatially gridded observations-based estimates of up-scaled gross primary production and
evapotranspiration from the FLUXNET network [13].

In this study, LDAS-Monde is applied and tested in a data-rich area: the CONtiguous US (CONUS,
defined here as longitudes from 130.0◦W to 60.0◦W, latitudes from 20.0◦N to 55.0◦N, as shown in
Figure 1). LDAS-Monde is forced by the latest ERA-5 atmospheric reanalysis from the European
Center for Medium Range Weather Forecast (ECMWF) from 2010 to 2016 leading to a seven-year,
quarter degree spatial resolution offline reanalysis of the land surface variables (LSVs). Ref. [28]
assessed ERA-5 ability to force the ISBA LSM by comparison to satellite-derived products and in
situ observations covering a substantial part of the land surface storage and fluxes. They found
that using ERA-5 in place of its predecessor, ERA-Interim, led to significant improvements in the
representation of the LSVs linked to the terrestrial water cycle (surface soil moisture, river discharges,
snow depth, and turbulent atmospheric fluxes), but did not improve the LSVs linked to the vegetation
cycle (evapotranspiration, carbon uptake, and LAI). In that respect, the assimilation of LAI through
ERA-5 driven reanalysis from LDAS-Monde is expected to bring clear improvements [13]. In this study,
the impact of LDAS-Monde analysis with respect to an open-loop (i.e., model run without assimilation)
is assessed using satellite-driven model estimates of land evapotranspiration from the Global Land
Evaporation Amsterdam Model (GLEAM) project and upscaled ground-based observations of gross
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primary productivity from the FLUXCOM project, together with river discharges from the United
States Geophysical Survey (USGS) and the Global Runoff Data Centre (GRDC). Over CONUS, in situ
measurements of soil moisture from the USCRN network (US Climate Reference Network) are also
used in the evaluation. Section 2 describes the different components of LDAS-Monde as well as the
evaluation data sets and strategy. Section 3 provides a set of statistical diagnostics to assess and evaluate
the impact of the assimilation. Finally, Section 4 provides perspectives and future research directions.
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Figure 1. Averaged (a) surface soil moisture from the Climate Change Initiative project of ESA
(for pixels with less than 15% of urban areas and with an elevation of less than 1500 m above sea level);
(b) GEOV1 leaf area index from the Copernicus Global Land Service project (for pixels covered by
more than 90% of vegetation) from 2010 to 2016. ESA CCI SSM—European Space Agency and Climate
Change Initiative surface soil moisture; LAI—leaf area index.

2. Data and Methods

2.1. LDAS-Monde System Components

LDAS-Monde allows sequential assimilation of satellite derived land observations at a global
scale. The assimilation is performed into the open-access SURFEX modelling platform of Météo-France
(SURFace Externalisée, [18]). It produces offline re-analyses of LSVs using (i) an LSM along with
data assimilation techniques, (ii) observations, and (iii) atmospheric forcing. Those components of
LDAS-Monde are briefly described below.

2.1.1. The SURFEX Modelling Platform

LDAS-Monde uses the CO2-responsive version of ISBA embedded within the SURFEX platform.
The most recent version of SURFEX (version 8.1) is used in this study with the “NIT” plant biomass
monitoring option for ISBA. In this configuration, ISBA simulates leaf-scale physiological processes
and plant growth [15–17]. The dynamic evolution of the vegetation biomass and LAI variables is
driven by photosynthesis in response to atmospheric and climate conditions. Photosynthesis enables
vegetation growth resulting from the CO2 uptake. During the growing phase, enhanced photosynthesis
corresponds to a CO2 uptake, which results in vegetation growth from the LAI minimum threshold
(prescribed as 1 m2 m−2 for coniferous forest or 0.3 m2 m−2 for other vegetation types). Transfers of
water and heat through the soil rely on a multilayer diffusion scheme [29,30]. The ISBA parameters
are defined for 12 generic land surface patches. They include nine plant functional types (needle leaf
trees, evergreen broadleaf trees, deciduous broadleaf trees, C3 crops, C4 crops, C4 irrigated crops,
herbaceous, tropical herbaceous, and wetlands) as well as bare soil, rocks, and permanent snow and
ice surfaces.

This version of ISBA is coupled to the CTRIP river routing model through OASIS-MCT [31] in
order to simulate streamflows of the main rivers [32–35]. Besides, a single-source energy budget of a
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soil/vegetation composite is computed. SURFEX also involves data assimilation techniques to analyse
LSVs from the ISBA LSM.

This study makes use of the simplified version of an extended Kalman filter (SEKF), as already
used and described in [13,19,21,36]. The SEKF uses finite differences from perturbed simulations to
estimate the linear tangent model linking the model state control variables to the observed variables.
Satellite derived surface soil moisture (SSM) and leaf area index (LAI) are simultaneously assimilated
to update eight model state control variables (i.e., control variables); LAI and soil moisture from seven
layers of soil, from 1 cm to 100 cm. Assimilating SSM and LAI within LDAS-Monde results in updates
of the LSM variables in different ways. Model variables corresponding to the observations are first
updated through the Kalman gain computed by the SEKF. Secondly, control variables are updated
through their sensitivity to the observed variables. For example, the assimilation of LAI impacts LAI
itself, but also soil moisture from the seven layers present in the state vector and the assimilation of
SSM impacts LAI. Finally, other variables are indirectly modified by the analysis through biophysical
processes and feedbacks in the model by updates of the control variables.

2.1.2. ESA CCI Surface Soil Moisture and CGLS Leaf Area Index

In this study the European Space Agency and Climate Change Initiative (ESA CCI) SSM-combined
version of the product (v4.1) is assimilated into LDAS-Monde (http://www.esa-soilmoisture-cci.org,
last access June 2018). The CCI merges SSM observations from seven different microwave radiometers
(SMMR, SSM/I, TMI, ASMR-E, WindSat, AMSR2, SMOS) and four different scatterometers (ERS-1
and 2 AMI, and MetOp-A and B ASCAT) into a single combined data set covering the time period
from November 1978 to December 2016. Data are expressed in volumetric (m3 m−3) units and quality
flags are provided (i.e., snow coverage or temperature below 0◦ and dense vegetation). For a more
comprehensive overview of the product, see [24,25]. Topographic relief is known to negatively affect
satellite remote sensing retrievals of SSM [37], hence the time series for pixels whose average altitude
exceeds 1500 m above sea level were not accounted for. Data on pixels with urban land cover fractions
larger than 15% were discarded too, to limit the effects of artificial surfaces. These thresholds were set
according to [13,20,38], who processed satellite-based SSM retrievals for data assimilation experiments
with the ISBA LSM. Data are available almost every day with a spatial resolution of 0.25◦ × 0.25◦.
To assimilate SSM data, it is important to rescale the observations such that they are consistent with the
model climatology [39,40]. Hence, similarly to previous studies, the ESA CCI SSM product has been
transformed into the model-equivalent SSM to address possible misspecification of physiographic
parameters, such as the wilting point and the field capacity. The linear rescaling approach described
in [41] (using the first two moments of the cumulative distribution function, CDF) was used. It consists
of a linear rescaling enabling a correction of the differences in the mean and variance of the distribution.
It has been applied at a seasonal scale (i.e., for each specific month) following [13].

The GEOV1 LAI is also assimilated. It is produced by the European Copernicus Global Land
Service project (http://land.copernicus.eu/global/, last access June 2018). Ref. [42] proposed an
evaluation of this product in the context of Numerical Weather Prediction (NWP). LAI observations
are retrieved from the SPOT-VGT (from 1999 to 2014) and then from PROBA-V (from 2014 to present)
satellite data according to the methodology proposed by [43]. The 1 km spatial resolution observations
are interpolated by an arithmetic average to the 0.25◦ × 0.25◦ model grid points, if at least 50% of
the observation grid points are observed (i.e., half the maximum amount). LAI observations have a
temporal frequency of 10 days at best (e.g., in presence of clouds, no observations are available). Both
assimilated datasets are illustrated by Figure 1, averaged over 2010–2016.

2.1.3. ERA-5 Atmospheric Reanalysis

ERA-5 [44] is the fifth generation of European re-analyses produced by the ECMWF and a key
element of the EU-funded Copernicus Climate Change Service (C3S). ERA-5 important changes
relative to ERA-interim former ECMWF’s atmospheric reanalysis include (i) a higher spatial and

http://www.esa-soilmoisture-cci.org
http://land.copernicus.eu/global/
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temporal resolution as well as (ii) a more recent version of ECMWF Earth system model physics and
data assimilation system (corresponding to ECMWF’s cycle CY41R2, https://www.ecmwf.int/en/
forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation, last access June
2018). It makes it possible to use modern parameterizations of Earth processes compared with older
versions used in ERA-interim. For instance, in addition to being applied to satellite observations,
a variational bias scheme is also applied to aircraft and surface ozone and pressure data. ERA-5 also
benefits from reprocessed data sets that were not ready yet during the production of ERA-interim. Two
other important features of ERA-5 are the more frequent model output and improved model spatial
resolution, going from six-hourly output in ERA-interim to hourly output analysis in ERA-5, and from
79 km (horizontal dimension) and 60 levels (vertical dimension) to 31 km and 137 levels in ERA-5.
Finally, ERA-5 also provides an estimate of uncertainty through the use of a 10-member ensemble
of data assimilations (EDA) at a coarser resolution (63 km horizontal resolution) and three-hourly
frequency. ERA-5 is foreseen to replace ERA-interim re-analysis. All ERA-5 atmospheric variables
were interpolated at 0.25◦ × 0.25◦ spatial resolution. A bilinear interpolation from the native reanalysis
grid to the regular grid was made.

2.2. Evaluation Datasets and Methods

The LDAS-Monde analysis impact was assessed with respect to the open-loop model run (i.e., no
assimilation). The system was spun-up by running year 2010 twenty times. Table 1 presents the set up
of the different experiments used in this study, the open-loop and the analysis, as well as two additional
model runs: (i) Ini_model, a 12-month model run starting on 1 January 2016 (initialised by the model,
that is, the openloop with no data assimilation, simulation run from 2010 to 2015); and (ii) Ini_analysis,
a 12-month model run initialised by initial conditions from the analysis on 1 January 2016. The two
above-mentioned assimilated datasets (ESA CCI SSM and LAI GEOV1) were used as a way to check
to what extent the assimilation system was able to produce analyses closer to these two datasets that
were assimilated than the open-loop. Then, two independent spatially distributed datasets, namely
evapotranspiration from the GLEAM project [45,46] and gross primary production (GPP) from the
FLUXCOM project [47,48], were used in the evaluation process. Ground based measurements of soil
moisture from the USCRN (US Climate Reference Network, [49]) were also used, along with river
discharge observations from the United States Geophysical Survey (USGS) and the Global Runoff Data
Centre (GRDC).

The ability of LDAS-Monde to represent SSM, LAI, evapotranspiration, and GPP was assessed
using the correlation coefficient (R) and root mean square difference (RMSD). These metrics were
applied at a seasonal scale (i.e., for each month) over 2010–2016. For ground-based measurements of
SSM, R was calculated for both absolute and anomaly time series in order to remove the strong impact
from the SSM seasonal cycle on this specific metric (see e.g., [13,28]). Ground measurements at a depth
of 5 cm were compared with soil moisture of the third layer of soil (between 4 and 10 cm depth) from
both the model and the analysis for months from April to September over the 2010–2016 time period to
avoid frozen conditions. Only stations with significant R values for the two experiments (with p-value
< 0.05) were kept for the evaluation.

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation
https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model/ifs-documentation
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Table 1. Set up of the experiments used in this study. ISBA—interactions between soil, biosphere, and atmosphere; DA—data assimilation; SEKF—simplified version
of an extended Kalman filter; ESA CCI SSM—European Space Agency and Climate Change Initiative surface soil moisture; LAI—leaf area index; CTRIP—Centre
National de Recherches Météorologiques version of the total runoff integrating pathways.

Experiments
(Time Period) Model Domain & Spatial

Resolution
Atmospheric

Forcing DA Method Assimilated
Observations

Model Equivalents of
the Observations Control Variables Additional

Options

Model or
Open-loop
(2010–2016)

ISBA Multi-layer
soil model

CO2-responsive version
(Interactive vegetation)

CONtiguous US
(CONUS), 0.25◦ × 0.25◦ ERA-5 N/A N/A N/A N/A Coupling with

CTRIP (0.5◦)

Analysis
(2010–2016)

ISBA Multi-layer
soil model

CO2-responsive version
(Interactive vegetation)

CONtiguous US
(CONUS), 0.25◦ × 0.25◦ ERA-5 SEKF SSM (ESA CCI)

LAI (GEOV1)

Rescaled WG2 (Second
layer of soil (1–4 cm))

LAI

Layers of soil 2 to 8 (WG2
to WG8, 1–100 cm)

LAI

Coupling with
CTRIP (0.5◦)

Ini_Model
(2016)

ISBA Multi-layer
soil model

CO2-responsive version
(Interactive vegetation)

CONtiguous US
(CONUS), 0.25◦ × 0.25◦ ERA-5 12-month model run starting on 1 January 2016

(initialised by the model simulation, i.e., Open-loop, run from 2010 to 2015)
Coupling with
CTRIP (0.5◦)

Ini_Analysis
(2016)

ISBA Multi-layer
soil model

CO2-responsive version
(Interactive vegetation)

CONtiguous US
(CONUS), 0.25◦ × 0.25◦ ERA-5 12-month model run starting on 1 January 2016

(initialised by the analysis run from 2010 to 2015)
Coupling with
CTRIP (0.5◦)
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In order to provide an easier measurement of the added value of the analysis, statistics were also
normalized with respect to the model. The so-called normalized information contribution index (NIC
as in [28,50]) was applied to the correlation coefficient (Equation (1), for both volumetric and anomaly
time-series) and to RMSD (Equation (2)) to quantify the improvement or degradation from the analysis
with respect to the model.

NICR =
R(Analysis) − R(Model)

1 − R(Model)
× 100 (1)

NRMSD =
RMSD(Analyse) − RMSD(Model)

RMSD(Model)
× 100 (2)

NIC scores were then classified according to three categories: (i) negative impact from the analysis
with respect to the model with values smaller than −3%, (ii) positive impact from the analysis with
respect to the model with values greater than +3%, and (iii) neutral impact from the analysis with
respect to the model with values between −3% and 3%.

Over the 2010–2016 time period, river discharge from the analysis and model runs were compared
with daily streamflow data from USGS and GRDC. Data were selected for sub-basins with rather large
drainage areas (10,000 km2 or greater) because of the low resolution of CTRIP (0.5◦ × 0.5◦) and with
a long observation time series (48 months or more). As commonly found in the literature, observed
and simulated river discharge (Q) data are expressed in m3 s−1. However, given that the observed
drainage areas may differ from the simulated ones, specific discharge in mm d−1 (the ratio of Q to
the drainage area) was used in this study, similarly to [13,28]. Stations with drainage areas differing
by more than 20% from the simulated ones were discarded. Impact on Q was evaluated using the
Kling–Gupta Efficiency (KGE, [51]) score:

KGE = 1 −
√

RE2
σ + RE2

µ + (1 − R)2 (3)

with REµ and REσ representing the relative error of simulated or analysed mean and standard deviation
(Equations (4) and (5)), respectively; R representing the correlation coefficient between the observed
discharges and either the modelled or analysed river discharges.

REµ =
Qµ

Q(obs.)µ

− 1 (4)

REσ =
Qσ

Q(obs.)σ

− 1 (5)

KGE represents the Euclidean distance from the ideal point in the [REµ, REσ, R] score space.
REµ, REσ, and R constitute a set of mathematically independent metrics quantifying the fit of
simulated/analysed discharge time series. At best, Reµ and REσ are equal to 0 and R is equal to
1 (leading to a perfect KGE value of 1), indicating that simulated or analysed time series are identical
to the measured one. NIC (Equation (1)) was applied to KGE (Equation (6)) as well, only for stations
with KGE values greater than 0. Finally, REµ and REσ metrics were normalised, following Equation (7),
as well as Equation (8) to appreciate the added value from the analysis with respect to the model.

NICKGE =
KGE(Analysis) − KGE(Model)

1 − KGE(Model)
× 100 (6)

NREµ =
100 ∗ REµ(Analysis) − REµ(Model)

REµ(Model)

(7)

NREσ =
100 ∗ REσ(Analysis) − REσ(Model)

REσ(Model)

(8)
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3. Results

3.1. Analysis Impact on Assimilated Variables

Being the model equivalents of the assimilated observations, LAI and soil moisture from the
second layer of soil are expected to be the two variables most affected by the assimilation. Figure 2
presents a 10-day time series of LAI averaged over the whole domain for the 2010–2016 time period.
From Figure 2, one can see that the open-loop simulation tends to overestimate the observed LAI in
winter periods and that the senescence phase of vegetation is too late over the autumn when compared
with the observations. In that respect, the assimilation is efficiently correcting the model; however,
analysed LAI does not reach LAI maximal values of the observations. Figure 3 shows maps of LAI
for the model (Figure 3a), the observations (Figure 3b), and the analysis (Figure 3c) averaged over
2010–2016. It is clearly visible that the model overestimates LAI in the eastern part of the domain.
Also, some geographical patterns visible in the observations (e.g., the Mississippi area in Figure 3b)
are not represented in the model (Figure 3a). After assimilation, the analysis presents reduced LAI
values in the eastern part of the domain and the above-mentioned geographical patterns are visible too
(Figure 3c). This shows the ability of the assimilation to integrate geographical information into the
model. Figure 3 also presents seasonal scores between the model and the observations and between the
analysis and the observations for RMSD and R over the 2010–2016 time period. The analysis leads to a
better fit between the model forecasts and the subsequent assimilated observations for both metrics.
On average for the whole period, RMSD values drop from 1.10 m2 m−2 (model vs. observations) to
0.65 m2 m−2 (analysis vs. observations), while R values increase from 0.69 (model vs. observations)
to 0.88 (analysis vs. observations). Figure 4 presents the same information content for soil moisture.
As ESA CCI SSM was rescaled in order to match the first two moments of the modelled SSM cumulative
distribution function, the impact is marginal and differences are hardly visible from Figure 4a–c.
From Figure 4d,e, however, one can appreciate the added value of the analysis: RMSD values drop
from 0.046 m3 m−3 (model vs. observations) to 0.044 m3 m−3 (analysis vs. observations), while R
values increase from 0.85 (model vs. observations) to 0.87 (analysis vs. observations). It is worth
mentioning that the good level of scores (prior as well as after assimilation) are linked to the rescaling
of the ESA CCI SSM data to the model climatology. Finally, Figure 5 shows maps of analysis increments
for 4 (out of 8) control variables averaged over the whole 2010–2016 time period (LAI, second, fourth,
and sixth layers of soil from left to right, respectively). It can be noticed that the magnitude of
increments is decreasing with depth. It can also be noticed that over almost the whole domain,
the analysis tends to add water in the soil near the surface (positive increments), while it dries layers
where the roots are mainly located (from layer 4 to 6, negative increments).
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Figure 3. Top row; leaf area index from (a) the model, (b) the observations, and (c) the analysis averaged
over the 2010–2016 time period. Bottom row: seasonal (d) root mean square difference (RMSD) and
(e) correlation values between leaf area index (LAI) from the model (in blue), the analysis (in red) and
GEOV1 LAI estimates from the Copernicus Global Land Service project from 2010 to 2016.
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Figure 5. Analysis increments averaged over the 2010–2016 time period for (a) LAI in m2 m−2,
(b) second, (c) fourth, and (d) sixth layer of soil moisture in m3 m−3.

3.2. Evaluation Using Independent Datasets

3.2.1. Evapotranspiration and GPP

Table 2 presents the statistical scores from the evaluation of both the open-loop and the analysis
with respect to evapotranspiration and GPP averaged over 2010–2016, as well as the mean of the
evaluation data set over the considered area. On average, R increases from 0.80 to 0.81 when comparing
evapotranspiration from the model and from the analysis, respectively, to the independent estimates.
Average RMSD decreases from 0.89 kg m−2 d−1 to 0.85 kg m−2 d−1. When compared with GPP
estimates, averaged correlations rise from 0.74 to 0.78 and RMSD drops from 2.20 g(C) m−2 d−1

to 1.91 g(C) m−2 d−1 when considering the model or the analysis, respectively. Figure 6 presents
spatial maps of NRMSD (Figure 6a,c) and NICR (Figure 6b,d) resulting from the comparison with
evapotranspiration (Figure 6, top row) and GPP (Figure 6, bottom row) of their modelled and analysed
equivalent. For NRMSD (Figure 6a,c), blue colours represent an improvement from the analysis
regarding RMSDs (i.e., the latter better represents either evapotranspiration or GPP than the model),
while for NICR (Figure 6b,d), red colours depict an improvement from the analysis. Figure 6 shows that
both evapotranspiration and GPP are improved almost everywhere in terms of correlation and RMSD,
and that the impact of the assimilation is stronger for GPP than for evapotranspiration. At the seasonal
scale (not shown), the assimilation leads to a positive impact all year long in the representation of GPP
in terms of both RMSD and R values. Impact from the assimilation on evapotranspiration is smaller
(as seen in Table 2), while RMSD values are slightly improved all year long, R values are slightly
improved from April to October and slightly degraded from November to March.
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Table 2. Statistical scores from the evaluation of both the open-loop and the analysis with respect to
evapotranspiration and gross primary production (GPP) averaged over 2010–2016. RMSD—root mean
square difference.

Mean of the
Evaluation Data Set Experiments RMSD R

Evapotranspiration 1.46 kg/m2/d
Open-loop 0.87 kg/m2/d 0.80

Analysis 0.85 kg/m2/d 0.81

Gross Primary
Production

1.76 g(C)/m2/d
Open-loop 2.20 g(C)/m2/d 0.74

Analysis 1.91 g(C)/m2/d 0.78
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Figure 6. Top row: (a) normalized root mean square difference (RMSD) (blue colours indicate an
improvement) and (b) normalized information contribution (NIC) applied on correlations values (red
colours indicate an improvement) for evapotranspiration from the analysis with respect to the model.
Bottom row: same as top row for gross primary production. Units are percentages.

Geographical patterns, as seen on the middle of Figure 6a,c (transition from relative wet to dry
areas) areas of the Midwest, are also visible in the soil moisture increments maps of Figure 5b,c,
where stronger increments occur. It is difficult to state whether or not those strong corrections
reflect atmospheric forcing errors, for example, precipitation, in this area as to date, very few studies
have evaluated ERA5 precipitation errors. Ref. [52] have evaluated a large amount of precipitation
products, including ERA5, using the high-resolution (4 km) stage-IV gauge-radar precipitation data
set as a reference over CONUS using several metrics for 2008–2017. Figure 1d of [52], illustrates the
Kling–Gupta efficiency (KGE) scores between ERA5 precipitation and stage-IV reference. If lower
values seem to be observed in the above-mentioned transition area, it is not clear enough to incriminate
precipitation errors. However, this geographical pattern corresponds to a specific soil moisture regime,
the Ustic regime, where moisture is present in the soil, but limited, at times in which conditions
are suitable for plant growth (as visible on the following USDA map: https://www.nrcs.usda.gov/
Internet/FSE_MEDIA/nrcs142p2_050436.jpg, last access October 2018). This area has specific soil
properties including clay, with high swelling potential [53]. Such soil properties are likely to be
misrepresented in the model, possibly leading to stronger increments in the analysis.

https://www.nrcs.usda.gov/Internet/FSE_MEDIA/nrcs142p2_050436.jpg
https://www.nrcs.usda.gov/Internet/FSE_MEDIA/nrcs142p2_050436.jpg
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3.2.2. Soil Moisture

The statistical scores for surface soil moisture from the model and the analysis (third layer of
soil between 4 and 10 cm depth) over 2010–2016 when compared with ground measurements from
the USCRN network (at 5 cm depth) are presented in Table 3. Median R values on volumetric soil
moisture time-series (anomaly time series), along with their 95% confidence interval of the median,
derived from 10,000-sample bootstrapping are as follows: 0.72 ± 0.02 (0.60 ± 0.02) and 0.74 ± 0.02
(0.60 ± 0.02), while median ubRMSDs are 0.049 ± 0.004 and 0.048 ± 0.004 for the model and the
analysis, respectively. Figure 7a,b illustrate correlation values on volumetric and anomaly time-series
between the model and the observations, respectively, for each station. Figure 7c,d represent the added
value of the analysis expressed through the NIC index (Equation (1)) applied for correlations (NICR)
values on volumetric and anomaly time-series; large blue circles represent a positive impact from
the analysis at NICR greater that +3 (i.e., R values are better when the analysis is used than when
the model is used), large red circles a degradation from the analysis at NICR smaller than −3, while
diamond symbols represent a rather neutral impact at NICR in between [−3; +3]. While 46% (81%) of
the pool of stations present a rather neutral impact for R values on volumetric (anomaly) time series,
stations more impacted by the analysis tend to be positively impacted at 46% (18%), to be compared
with 8% (1%) of negative impacts. Although differences between the model run and the analysis are
rather small, these results underline the added value of the analysis with respect to the model run.
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Figure 7. Maps of correlation (R) on volumetric time-series (a) and anomaly time-series (b) between in
situ measurements at 5 cm depth from the US Climate Reference Network (USCRN) network and soil
moisture from the model (third layer of soil between 4 cm and 10 cm) from 2010 to 2016. NIC applied
on R (anomaly R) values (c,d); analysis with respect to the model. NIC scores are classified according
to three categories: (i) negative impact from the analysis with respect to the model with values smaller
than −3% (red circles), (ii) positive impact from the analysis with respect to the model with values
greater than +3% (blue circles), and (iii) neutral impact from the analysis with respect to the model
with values between −3% and 3% (diamonds).
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Table 3. Analysis impact evaluation against in situ measurements of soil moisture from the US Climate
Reference Network (USCRN) network. In situ measurements at a depth of 5 cm are used to evaluate
soil moisture from the third layer of soil (4–10 cm) from either the model or analysis experiment over
2010–2016. The normalized information contribution (NIC) is applied to the correlation (anomaly
correlations) values. NIC scores are classified according to three categories: (i) negative impact from
the analysis with respect to the model with values smaller than −3%, (ii) positive impact from the
analysis with respect to the model with values greater than +3%, and (iii) neutral impact from the
analysis with respect to the model with values between −3% and 3%.

110 (110)
Stations with
Significant R
(Anomaly R)

Median R
(Anomaly R)

Median
ubRMSD

Positive
Impact: >+3

←3 Negative
Impact: <−3

Neutral Impact
[−3; +3]

Model 0.72 ± 0.02 *
(0.60 ± 0.02 *)

0.049 ± 0.004
* N/A N/A N/A

Analysis 0.74 ± 0.02 *
(0.60 ± 0.02 *)

0.048 ± 0.004
* 46% (18%) 8% (1%) 46% (81%)

* 95% confidence interval of the median derived from a 10,000 samples bootstrapping.

3.2.3. Streamflow

A subset of 258 out of 531 gauging stations was selected for the evaluation according to the criteria
described in the methodology section, with KGE scores within the [0, 1] interval. Figure 8 presents
the performance of analysed streamflow with respect to the one from the model run for this pool
of stations, with a focus on the eastern part of the domain. NICKGE values are presented following
the same classification as NICR applied to soil moisture. Scores are presented in Table 4. Looking at
NICKGE, 62% of the pool of stations (258 stations) present a rather neutral impact (at NICKGE between
[−3; 3]) and 26% of the stations present a positive impact (at NICKGE > +3), while only 12% of stations
have a negative impact (at NICKGE < −3). NICR, NREσ, and NREµ follow the same classification (with
even a smaller percentage of stations being negatively affected by the analysis; 1%); when the analysis
is impacting streamflow representation, it tends to be a positive impact.
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Figure 8. Normalized information contribution scores based on Kling–Gupta efficiency (KGE) scores
(NICKGE) (a) analysis with respect to the model, (b) zoom over the eastern part of the domain. Small
diamonds represent stations for which NICKGE are between [−3; +3]. NICKGE greater than 3 (blue
large circles) suggest an improvement from the analysis over the model, values smaller than −3 (red
large circles) suggest a degradation. For sake of clarity, a factor of 100 has been applied to NIC.
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Table 4. Analysis impact evaluation against daily streamflow over 2010–2016. The impact from
the analysis with respect to the model is assessed through the normalized information contribution
(NIC) applied to the Kling–Gupta efficiency (KGE) score, as well as using normalized relative error of
simulated or analysed mean (REµ) and standard deviation (REσ). Scores are classified according to
three categories: (i) negative impact from the analysis with respect to the model with values smaller
than −3, (ii) positive impact from the analysis with respect to the model with values greater than +3,
and (iii) neutral impact from the analysis with respect to the model with values between −3 and 3.

258 out of 531 Stations
with KGE Greater than 0 Positive Impact: >+3 Negative Impact: <−3 Neutral Impact [−3; +3]

NICKGE 26% 12% 62%
NREσ 22% 1% 77%
NREµ 34% 1% 65%

4. Potential Applications, Discussions, and Perspectives

4.1. Could LDAS-Monde be Used to Monitor Agricultural Droughts?

The previous section has highlighted the LDAS-Monde ability to enhance the monitoring accuracy
for land surface variables. It should then be possible to use it to better represent extreme events like
agricultural droughts. Figure 9 represents monthly LAI anomalies averaged over the U.S. corn belt
(simplified as a box from 110◦W to 70◦W and 30◦N to 50◦N) with respect to 2010–2016 means from the
model, the analysis, and the observations. As shown by Figure 9, for the second part of the year 2012,
LAI observations exhibit a strong negative anomaly at this domain scale. While it is also visible in
the model, the latter clearly overestimates the intensity of the observed anomaly. The analysed LAI
anomaly is closer to the observed one than the model. This extreme drought event is known as the
August 2012 U.S. corn belt drought. The U.S. Department of Agriculture (USDA, www.nass.usda.gov,
last access June 2018) estimated that corn yield (per acre of planted crop) was 26% below the expectation
that they had at the beginning of the 2012 growing season. The 2012 corn yield deficit and the implied
climatic impact was classified as a ‘historic event’ [54]. As visible on Figure 9, spring 2012 presents a
positive anomaly for vegetation. Ref. [55] defined spring 2012 as the earliest false spring in the North
American record (i.e., a period of weather in late winter or early spring allowing vegetation to be
prematurely brought out of dormancy). This false spring has contributed to an earlier dry out of the
soil. Figure 10 presents maps of the LAI anomaly for this specific month for the model, observations,
and analysis from left to right, respectively. Compared with the observations (Figure 10b), the area
affected by the anomaly in the model (Figure 10a) is too large and too intense, while the analysis
(Figure 10c) better matches the observed pattern in both space and intensity. This impact is valid when
compared with most of the severe droughts events that occurred over CONUS (data from the National
Oceanic and Atmospheric Administration (NOAA) state of the climate website, last access April 2018
https://www.ncdc.noaa.gov/sotc/drought/201803, not shown). Hence, LDAS-Monde provides a
better tool than the model alone to monitor extreme events like agricultural droughts.
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Figure 10. (a) Monthly anomaly of leaf area index for August 2012 with respect to the 2010–2016 period,
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It is also worth mentioning that if LDAS-Monde brings a clear improvement in the representation
of LAI, reducing the overestimation duration as well as the minimal values, as its model counterpart,
it fails capturing the observed LAI peak intensity. Ref. [13] has evaluated the model sensitivity of
the observation for Europe over 2000–2012 reflected in the SEKF Jacobians. The Jacobians depend on
the model physics and their examination provides useful insight that explains the data assimilation
system performances [21,56]. Ref. [13] suggests a seasonal dependency of the model sensitivity to the
observed LAI. High sensitivity is found in autumn. Smaller model sensitivity at the time of the year
where the peak LAI occurs (late spring) prevails the analysis to match the observations correctly.

As highlighted by [57], who have evaluated the capacity of several LSMs (including ISBA) to
accurately simulate observed energy and water fluxes during droughts, there is a need to re-examine
existing model components in LSMs to improve simulations of soil hydrological processes and
water–plant interactions. It appears from Figure 2 that although the analysis is able to correct the
overestimated LAI values in winter, the minimum LAI thresholds used in ISBA has to be revisited.
Recently, the satellite derived LAI data have been disaggregated following a Kalman filtering technique
developed by [58]. This enables the LAI signal for each vegetation type to be separated within the
pixel, which provides a dynamic vegetation-dependent estimate of the assimilated LAI within the
pixel [59]. This new dataset will make it possible to modify the minimum LAI thresholds accordingly.

4.2. Could LDAS-Monde Provide Accurate Initial Conditions for Vegetation Forecasts?

In the context of NWP, assimilation of satellite observations in atmospheric models has the capacity
to mitigate model deficiencies, leading to better estimates of system states. This has been the main
driver of the improvement of both weather forecast skill and lead time [60]. Data assimilation is able to
produce similar benefits for LSVs forecasting. Seeking to foster a link with applications, LDAS-Monde
could not only be used to monitor the LSVs, but could also be integrated into a forecasting system
(at different time scales) assuming that it can provide better initial conditions than a model run and
that its impact lasts in time. Many applications could benefit from a better representation of the LSVs,
from NWP [61], to early warning systems of, for example, agricultural drought and yield forecasts.
As a first step towards such early warning systems, Figure 11 shows a comparison between LAI from
the two last simulations presented in Table 1: Ini_Model and Ini_Analysis. Figure 11a,b shows monthly
RMSD (R) values for the year 2016 for LAI. A strong impact is visible not only from the beginning
of the two simulations, but also a few months later (up to April). The four maps of Figure 11c show
RMSD differences between Ini_analysis and Ini_model from January to April. All maps are dominated
by negative values (in blue), suggesting that Ini_analysis presents a better match with the observed LAI
and that analysis effects last in time. Southeastern part of the domain is mainly affected, these areas
are dominated by broadleaves forest as well as C3 crops. Large differences between the model and
the analysis during winter time (as shown on Figure 2) suggest that the minimum LAI threshold
used in the model for these vegetation types has to be revisited. Such results are strongly linked to
the time of the year when the simulation is initialised by the analysis, that is, the greater the prior
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difference between the model and the analysis experiments will be, the stronger the impact. As for
LAI, and according to Figure 2a, marked impact would be expected from July to March. It is also
very promising that the impact of LAI initialisation lasts in time for several weeks or even months.
Those results are in line with findings from [5] who have assimilated biomass and LAI observations
at “site-level” in CLM4.5. They found that monthly forecasts (and even longer forecasts range) were
improved by data assimilation compared with forecasts without data assimilation.
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Figure 11. Seasonal (a) root mean square differences (RMSD) and (b) correlation values between
observed leaf area index (LAI) and (in blue) a 12-month model run, (in red) a 12-month model run
initialised by analysed conditions from LDAS-Monde. (c) RMSD differences values between a 12-month
model run and a 12-month model run initialised by analysed conditions from LDAS-Monde.

Although the ISBA LSM does not directly represent grain yield (GY), it is assumed that the
regional-scale simulations of above-ground biomass from a generic LSM can provide the inter-annual
variability as a proxy for GY [62,63]. Refs. [13,64] have also found that the LDAS-Monde analysed
above-ground biomass inter-annual variability was in better agreement with that of GY than its
open-loop counterpart. These studies have been performed over France using straw cereal GY values
from the Agreste French agricultural statistics portal (http://agreste.agriculture.gouv.fr). If more
evaluations are required to assess LDAS-Monde capacity to represent GY, it paves the way towards
potential productivity and yield forecasting system.

4.3. Which Alternative Data to Better Constrain LDAS-Monde?

LDAS-Monde re-analyses presented above were repeated, assimilating only SSM or LAI,
the results suggested that most of the skill came from the assimilation of LAI (not shown). Assimilating
LAI permits to analyze not only LAI itself, but also the root zone soil moisture. While assimilating SSM
does mainly affect the first layers of soil (layer 2, 1 cm to 4 cm and layer 3, 4 cm to 10 cm), assimilating
LAI has an impact on deeper layers (up to 60 cm) and is more efficient to analyse the root zone soil

http://agreste.agriculture.gouv.fr
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moisture too. This has also been suggested by [13], when analysing the ISBA LSM sensitivity to the
assimilated observations through the SEKF Jacobians.

However, the LAI product used in this study is available every 10 days at best, making it less
efficient to constrain the ISBA LSM, particularly in areas of the world affected by clouds for long
periods of time (e.g., areas affected by the monsoon regime). Another caveat is the use of a single LAI
value for all vegetation types that are represented in SURFEX. As detailed in [20], the innovation is
computed from the difference between the observed LAI and the modelled LAI aggregated over all the
vegetation types. Then, the Kalman gain is calculated for each individual vegetation type. The analysis
increment is added to the background for each vegetation type, producing a vegetation-dependent
analysis update. The vegetation dependence is introduced in the Kalman gain via the Jacobian elements.
As mentioned already, the possibility of having LAI estimates for each type of vegetation is under
investigation [59] and has the capacity of overcoming the above-mentioned weakness. An extension of
this work is under development to assimilate in LDAS-Monde the disaggregated LAI product for each
vegetation type independently, with very promising preliminary results [65].

Microwave remote sensing over land has mainly focused on soil moisture retrieval [66,67] and
vegetation was mostly considered during the retrieval of surface soil moisture as a by-pass product
affecting the signal penetration to the surface [68,69]. The attenuation of the signal (i.e., when passing
through the vegetation) depends on the vegetation optical depth (VOD). VOD describes the attenuation
of radiation due to scattering and absorption within the vegetation layer, which is caused by the water
contained in the vegetation. It is function of the frequency of the microwave sensor, the water content
of the plant (trunk, branches, leaves), as well as the biomass (e.g., [70–73]. VOD can be retrieved from
microwave data, for example, from the L-band soil moisture and ocean salinity (SMOS) mission [74]
or the C-band advanced scatterometer (ASCAT) mission on-board the meteorological operational
satellite A (MetOp-A) [75,76]. VOD can be related to LAI (e.g., [77–80]. Figure 12 presents a map of
temporal correlation coefficient values between modelled LAI and microwave-derived VOD from
radar backscatter measurements of ASCAT [75,76] (Figure 12a), as well as their distribution (Figure 12b)
for 2010–2016. High correlations values are found in large parts of the domain, with a median value of
0.57. The northern part of the domain shows R values greater than 0.7, while smaller R values (and
even negative R values) are found in the southern part of the domain. Over dry soils, sub-surface
scattering from the microwave signal potentially affects the VOD estimates (Wolfgang Wagner, TU
WIEN, personal communication, April 2018). The same VOD dataset has a higher median R value
with the observed LAI, that is, 0.88. Consequently it better correlates with the analysis (median R
values of 0.61) than with the model. If a strong statistical relationship between C-band VOD and LAI
can be obtained through the use of, for example, machine learning techniques (like neural network
techniques, [81], it could enable obtaining a surrogate of LAI based on C-band VOD that would have
the advantage of having higher temporal frequency than the current LAI product (low frequency
microwave observations are not affected much by clouds and are not affected by solar elevation). Such
a product could then be assimilated into LDAS-Monde to better constrain the system. Looking at such
a relationship for data assimilation purposes is currently under study at CNRM.

Also, retrieved soil moisture is assimilated in LDAS-Monde, from active radar backscatter (σo)
observations. Retrieval methods usually make use of land surface parameters and auxiliary information
(like vegetation, texture, and temperature), possibly being inconsistent with specific model simulations
(which also include these parameters, but potentially from different sources). Also, if retrievals and
model simulations rely on similar types of auxiliary information, their errors may be cross-correlated,
potentially degrading the system performance [82]. This leads to an increasing tendency towards
the direct assimilation of σo observations (and of passive radiometer brightness temperature, Tb,
as well) [83–87]. CNRM is also investigating the direct assimilation of σo. It requires the implementation
of a forward model for σo in the ISBA LSM. Ref. [85] used the Water Cloud Model [88] to relate surface
soil moisture from the Global Land Evaporation Amsterdam Model (GLEAM, [45,89]) to σo for data
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assimilation purposes. Within LDAS-Monde, both surface soil moisture and leaf area index could be
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5. Conclusions

In this study, LDAS-Monde sequential assimilation of satellite derived surface soil moisture and
leaf area index, forced by ERA-5 latest atmospheric re-analysis, was applied to the CONtiguous US
domain. Ref. [28] have highlighted the added value of using the ERA-5 atmospheric reanalysis to force
the ISBA Land Surface Model over the CONtiguous US for the 2010–2016 period. They found that the
use of ERA-5 instead of ERA-interim leads to significant improvements in the representation of the
land surface variables linked to the terrestrial water cycle (e.g., surface soil moisture, river discharges,
snow depth, and turbulent fluxes), but to a rather neutral impact on land surface variables linked
to the vegetation cycle (e.g., evapotranspiration, carbon uptake, and leaf area index). Assimilating
satellite derived observations linked to vegetation (LAI in this application) through LDAS-Monde
forced by ERA-5 not only leads to a clear improvement in the representation of the vegetation cycle in
ISBA, but brings further improvement on the representation of the terrestrial water cycle. The results
have highlighted the stronger impact of LAI observations assimilation with respect to soil moisture
assimilation. Other vegetation-related observations such as vegetation optical depth could be used,
under specific circumstances, as a surrogate of LAI limiting the negative impact of the rather low
temporal frequency of the LAI product. LDAS-Monde is a powerful tool to track the evolution of land
surface variables and to monitor extreme events such as agricultural drought. Since LDAS-Monde
analysis is more accurate than a simple model run, it can be used to initialise a forecast experiment
of the land surface variables. Preliminary results suggest that its impact on forecast experiments,
in particular with respect to vegetation, is positive and lasts in time. It opens the way towards
applications from monitoring to forecasting land surface states. For that purpose, LDAS-Monde will
be forced by other, higher spatial resolution, ECMWF atmospheric products like the high resolution
forecast (HRES, current spatial resolution of ~9 km), which also gives daily forecasts up to 10 days
ahead and/or the ensemble forecast (ENS, current spatial resolution of ~18 km), giving daily forecasts
up to 15 days (46 days twice a week).
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